From Slate:

Autonomous cars have a potentially fatal flaw: They struggle to detect and react to cyclists on the road. According to a January 2017 report by IEEE Spectrum, bicycles are generally considered “the most difficult detection problem that autonomous vehicle systems face.”

… we’re increasingly learning that A.I. can amplify our own biases and human failings. If humans aren’t doing a good job of detecting and preventing vehicle-bike collisions, how can we create machines that do the job even better?

One solution presented …(is) bicycle-to-vehicle communications. Instead of just autonomous vehicles (or all motorized vehicles) on the road being able to wirelessly communicate their position and intentions with one another, bikes would be able to join the party. The proposed technology would be brand agnostic, something any cyclist could affix to herself or her bike. …

There’s one problem: This is cheating. Autonomous cars, out there beta testing on U.S. roads today, can accurately detect other vehicles, pedestrians, even big game charging suddenly across a street. Forcing cyclists alone to strap a sensor onto their backs feels like a crutch, a cop-out. …

The problem is that it requires everyone to take part, which poses several noteworthy financial and logistical questions, such as who pays for this system, how it’s deployed, how it’s enforced, and whether pedestrian and traffic laws would need to be changed in order to facilitate cooperative behavior. (For example, stricter jaywalking laws to ensure pedestrians only cross in places self-driving cars expect them to.)

In this scenario, autonomous car success hinges on a large number of difficult-to-control variables. But if the cars themselves are able to successfully sense and react to their surroundings, from a cyclist taking the lane to a toddler dashing into the street, the only variable that needs controlling is the technology itself. …

Bicycle-to-vehicle communication is a good idea and could be useful in certain scenarios, such as when visibility is low—at night or in the rain—or on tricky, twisty back roads with blind corners. But if cars are going to drive the roads without human help, they need to be able to handle all of the challenges that come with it, regardless of whether they’re wirelessly connected to the world around them.